首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20104篇
  免费   5791篇
  国内免费   6877篇
测绘学   3833篇
大气科学   2789篇
地球物理   3895篇
地质学   12980篇
海洋学   4423篇
天文学   370篇
综合类   1668篇
自然地理   2814篇
  2024年   94篇
  2023年   470篇
  2022年   1249篇
  2021年   1468篇
  2020年   1222篇
  2019年   1289篇
  2018年   1386篇
  2017年   1239篇
  2016年   1222篇
  2015年   1485篇
  2014年   1460篇
  2013年   1755篇
  2012年   1941篇
  2011年   1860篇
  2010年   1816篇
  2009年   1682篇
  2008年   1770篇
  2007年   1647篇
  2006年   1533篇
  2005年   1359篇
  2004年   953篇
  2003年   713篇
  2002年   784篇
  2001年   726篇
  2000年   538篇
  1999年   277篇
  1998年   119篇
  1997年   135篇
  1996年   105篇
  1995年   70篇
  1994年   58篇
  1993年   41篇
  1992年   52篇
  1991年   30篇
  1990年   36篇
  1989年   26篇
  1988年   17篇
  1987年   18篇
  1986年   14篇
  1985年   23篇
  1984年   17篇
  1983年   11篇
  1982年   10篇
  1981年   9篇
  1979年   13篇
  1978年   3篇
  1974年   2篇
  1965年   2篇
  1957年   7篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
黄河三角洲孤东近岸冲淤演变及其影响因素   总被引:1,自引:0,他引:1  
为更好地了解近40年来孤东近岸的演变过程,以研究区剖面水深地形、Landsat影像和利津站水沙数据为数据源,采用遥感技术及数理统计法对研究区域岸线及面积变化进行监测计算,并分析1976—1986年、1986—1996年、1996—2002年、2002—2014年4个不同阶段的冲淤演变及影响因素。结果表明:(1)孤东近岸经历"强淤积-冲淤平衡-侵蚀-强侵蚀"4个阶段。孤东近岸海域由淤积向侵蚀转变始于1996年,且在2002—2014年间侵蚀最为严重,大部分近岸海域蚀深达到6~8 m,侵蚀最大深度超过8 m;(2)等深线变化时空差异明显,蚀退最先出现在北侧,且近岸5 m水深区域内冲淤变化较水深10 m内敏感;(3)研究区近岸侵蚀,离岸淤积,剖面冲淤平衡位置由CS19剖面的11 m水深变化到CS21剖面的5m水深;(4)黄河入海水沙的减少、河口人工改汊、孤东大堤建设和海洋动力作用都对孤东近岸的冲淤演变产生影响,维持研究区冲淤平衡的年均来沙阈值为3.78亿t/a。通过此来进一步探究孤东近岸演变进程,为孤东近岸防护提供科学指导。  相似文献   
22.
23.
本研究在通渭、兰州、西吉、宝鸡、西安等多个西北典型黄土震陷灾害场地获取原状土样,通过对密度、含水率、孔隙比、塑液限等物理指标的测试,分析其与土体震陷性的关系;通过动弹性模量和阻尼比、动强度、震陷等室内动力特性试验,并结合大量前人研究资料,分析土体性质对岩土震陷灾害的区域性影响。结果表明:1)震陷系数与单一土体物性参数呈正相关或负相关关系,六盘山以西和以东的黄土震陷特性反映了明显的地区变化规律,在相同地震荷载作用下震害东轻西重;2)随着时间的推移,人类的活动增加,改变了土的含水率,导致土体上覆压力增大,在上覆压力的作用下,土体的初始孔隙数量有所减少,其固结程度越来越好,宏观表现为土体的易损性即震陷性减小。  相似文献   
24.
基于Sentinel-2的潮间红树林提取方法   总被引:1,自引:0,他引:1  
位于潮间带的红树林可能在高潮时被海水淹没的特点,使得传统的植被提取方法在红树林信息提取方面存在局限性。本文在对比分析了出露的红树林、高潮水位淹没的红树林、海水水体的光谱特征后,提出了一种利用归一化潮间红树林指数(NIMI)提取潮间带红树林的方法。该指数是由植被强吸收的红波段,强反射的两个红边波段和近红外波段组成的归一化表达式。利用该指数对福建省龙海九龙江口湿地的红树林进行了分类提取,提取结果与高分二号影像目视验证和现场调查结果进行了对照。结果显示,该方法提取红树林的用户精度达到93.98%,并显著优于利用归一化水体指数(NDWI)、归一化植被指数(NDVI)及随机森林的结果。  相似文献   
25.
近年来国产卫星传感器类型日益丰富,使用自主可控的国产卫星影像进行生产和研究的需求越来越大,多源国产卫星影像联合平差的精度分析显得尤为重要。本文针对在立体测图生产中,资源三号卫星影像在时相较旧、噪声较大、云覆盖和摄影漏洞等特殊困难的条件下,利用天绘一号卫星影像进行补漏生产的情况,最终分析并验证了两者无控联合平差的可行性和成果精度。  相似文献   
26.
余蕊  陈玮扬  杨扬  杨昆  罗毅 《遥感学报》2020,24(11):1325-1341
利用小型无人机进行遥感图像配准在自然灾害损害评估、环境监测和目标检测与追踪等领域发挥着至关重要的作用,但小型无人机的图像采集过程容易受风速/风向、复杂地形、电池容量、飞行姿态、飞行高度等自然或人为因素的影响。这些问题通常会导致捕捉到的场景重叠率低与图像非刚性畸变,在特征点提取过程中产生大量冗余点,增加了图像配准的难度。本文提出一种基于特征点的小型无人机图像配准方法,该方法的核心思想是在配准过程中识别冗余点,同时最大化可用内点数量。所识别的冗余点当作控制点,用于控制网格代图像的运动。最后通过最大化内点和合理移动控制点来恢复图像变换。本文使用50对小型无人机图像进行特征匹配和图像配准的实验,其中平均配准精度可达80.38%,并且本文方法在所有的情况下都优于5种当前流行算法。  相似文献   
27.
影像的应用前提是影像处理,大气校正可消除大气和光照等因素对地物发射的影响。在此基础上,介绍几种常用的几何纠正方法,可消除系统和非系统因素引起的影像几何变形。本文通过对资源三号卫星的基本参数信息和相对应影像数据特点的介绍,先通过大气校正,校正后的影像分别使用几何纠正的几种方法,并通过各种方法的计算量、实用性以及相应的精度,对比分析各种方法在处理这种数据时的优越性。  相似文献   
28.
目前存在有多种地幔热导率模型,不同模型在数值和随温压变化的特征上有明显的差异.为探究不同热导率模型对动力学数值模拟结果的影响,本文对不同模型下的岩石圈张裂过程进行模拟研究,探讨地幔热导率对岩石圈热传输、变形和熔融过程的影响及其作用机理.结果显示,不同热导率模型下,岩石圈的变形和熔融特征表现出明显差异.高热导率模型下,岩石圈破裂较晚,形成陆缘较为宽阔,地壳熔融强烈而地幔熔融较弱;低热导率模型下,岩石圈破裂较早,形成陆缘较为狭窄,地幔熔融强烈而地壳熔融较弱.这种差异源于不同地幔热导率下岩石圈和地幔热状态的变化及相应力学性质的改变.高热导率下,热传导的增温效应显著,岩石圈呈现较热的状态,其强度整体较低,壳幔耦合减弱;而低热导率下,热对流的增温效应显著,岩石圈呈较冷的状态,其强度整体较高,壳幔耦合增强.基于模拟结果,本文认为地幔热导率的选取对动力学模拟的结果有着较为显著的影响,相对于随温压的变化,热导率数值的差异对动力学数值模拟的结果影响更大,尤其是对于地幔熔融过程的影响.  相似文献   
29.
张喆  许力生 《地球物理学报》2020,63(8):2978-2998
2013年11月17日,在南极南奥克尼群岛北、南极板块与斯科舍板块之间发生了一次MW7.8级地震(2013年南斯科舍海岭MW7.8地震),我们利用全球分布的长周期和宽频带地震记录反演确定了这次地震随时间和空间变化的震源机制,验证了提出的一种多点震源机制反演的新方法.首先利用长周期记录的W震相反演了这次地震的矩心矩张量解并利用体波提取了视震源时间函数,同时利用台阵反投影技术从宽频带记录中获得了这次地震的高频源的时空分布,然后基于矩心矩张量解、视震源时间函数以及高频源的时空分布,实现了采用新方法对2013年南斯科舍海岭MW7.8地震的多点震源机制反演.矩心矩张量解表明,地震矩心在44.50°W/60.18°S,矩心深度19 km,半持续时间49 s,释放标量地震矩4.71×1020 N·m,发震断层走向104°,倾角54°,滑动角8°.视震源时间函数清楚地揭示了地震矩随时间变化的方位依赖性,总体上可以将时间过程分为前60 s和后50 s两个阶段,但前60 s可细分为两次子事件.根据台阵反投影结果,这次地震为沿海沟从西到东的单侧破裂,破裂长度达311 km,可以分为5次子事件,能量释放的峰值点依次为13 s、30 s、51 s、64 s和84 s,平均破裂速度分别为0.6 km·s-1、2.6 km·s-1、2.3 km·s-1、2.8 km·s-1和3 km·s-1.多点震源机制反演显示,5次子事件的矩震级分别为MW7.57,MW7.48,MW6.80,MW7.53和MW7.08,半持续时间依次为21 s,17 s,6 s,16 s和8 s,走向分别为95°,105°,81°,98°和98°,倾角依次为57°,49°,86°,46°和64°,滑动角-9°,1°,-17°,13°和-4°.这些在震源机制、能量释放以及持续时间方面的变化都是当地构造和应力环境复杂性的反映.  相似文献   
30.
The temporal and spatial distributions of Antarctic sea ice play important roles in both the generation mechanisms and the signal characteristics of microseisms. This link paves the way for seismological investigations of Antarctic sea ice. Here we present an overview of the current state of seismological research about microseisms on Antarctic sea ice. We first briefly review satellite remote-sensing observations of Antarctic sea ice over the past 50 years. We then systematically expound upon the generation mechanisms and source distribution of microseisms in relation to seismic noise investigations of sea ice, and the characteristics of Antarctic microseisms and relationship with sea ice variations are further analyzed. We also analyze the continuous data recorded at seismic station BEAR in West Antarctica from 2011 to 2018 and compare the microseism observations with the corresponding satellite remote-sensing observations of Antarctic sea ice. Our results show that:(1) the microseisms from the coastal regions of West Antarctica exhibit clear seasonal variations, SFM with maximum intensities every April-May and minimum intensities around every October-November; while DFM intensities peak every February-March, and reach the minimum around every October. Comparatively, the strong seasonal periodicity of Antarctic sea ice in better agreement with the observed DFM; and (2) microseism decay is not synchronous with sea ice expansion since the microseism intensity is also linked to the source location, source intensity (e.g., ocean storms, ocean wave field), and other factors. Finally, we discuss the effect of Southern Annular Mode on Antarctic sea ice and microseisms, as well as the current limitations and potential of employing seismological investigations to elucidate Antarctic sea ice variations and climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号